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SYMBOLS 

d streamwise scale d is tance  (1/2 chord) 

f ( r i  1 funct ion which iden t i f i e s   cha rac t e r i s t i c   f ami ly  

G(E,i ,r i ,pi)   difference  between  l inearized and corrected  shock  location 

2 span  of wing 

m s lope   o f  wing a i r f o i l   s e c t i o n  a t  the  leading  edge 

M free-stream Mach number 
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PSH pressure  just   upstream  of  the  shock wave 

R distance  from  axis  of symmetry  of wing, 
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INVESTIGATION OF SONIC BOOM GENERATED BY THIN, 

NONLIFTING,  RECTANGULAR WINGS 

Sanford S. Davis 

Ames Research  Center 

SUMMARY 

A new theory i s  descr ibed   for   p red ic t ing   sonic  boom pressure   s igna tures  
emitted by nonl i f t ing  rectangular   wings.  Comparisons are made with  previous 
(Whitham) theory and  with  experimentally  determined  near  f ield  signatures.  
Although  both  theories  agree  with  experiment  for low aspec t   ra t io   wings ,  
Whitham's t heo ry   s e r ious ly   ove rp red ic t s   s igna tu re   l eng th   fo r   h igh   a spec t   r a t io  
wings. No experiments  were  conducted i n   t h e  far  f i e ld ,   bu t   t he  two theo r i e s  
p red ic t   nea r ly   i den t i ca l   r e su l t s   i n   t h i s   r eg ion .  

INTRODUCTION 

The s tandard methods  used t o   p r e d i c t   t h e   s o n i c  boom are  based on a theory 
developed  by Whitham ( re f s .  1 and 2 ) .  Although the  theory was o r i g i n a l l y  
devised  for  slender,   axisymmetric  configurations,  Whitham extended  his  theory 
to   inc lude   a rb i t ra ry   conf igura t ions  by using  the methods  of  geometrical 
acous t ics   ( re f .  3 ) .  He la te r   rea l ized   tha t   the   p rocedures   deve loped   for  
slender,  symmetrical  bodies  of  revolution may be   used   in tac t   for  a nonsymmet- 
r ica l   conf igura t ion  i f  t h e  so-cal led  equivalent  body of   revolut ion is i n t r o -  
duced. But i f  the   equiva len t  body of   revolut ion i s  not   s lender ,  Whitham's 
theory  as   given  in   reference 2 i s  n o t   s t r i c t l y   a p p l i c a b l e .  The e x t e n t   t o  
which the   p re s su re   s igna tu res   ca l cu la t ed   fo r  a nonslender  equivalent body 
deviates  from the  experimental ly   determined  s ignatures  will be  explored  in  
t h i s   r e p o r t .  

In   o rde r   t o   p red ic t   son ic  boom pressure   s igna tures  more a c c u r a t e l y   i n   t h e  
nea r f i e lds  and midfields   for   nonslender   configurat ions,  a new theory  has  been 
developed.  Although r e s t r i c t ed   t o   non l i f t i ng ,   r ec t angu la r   w ings ,   t h i s   t heo ry  
p red ic t s   subs t an t i a l   d i f f e rences   i n   p re s su re   s igna tu res  when compared with  the 
equivalent  body theory.  The purpose   o f   th i s   repor t  is to   eva lua te   s igna tu res  
pred ic ted  by both   theor ies  and t o  compare  them with  experimentally  determined 
s igna tures .  

The rec tangular  wing represents  a ve ry   i n t e re s t ing  model configurat ion 
because  of   the  divers i ty  of flows  surrounding it. The  wing t i p  Mach cones 
d iv ide   the   f low  in to  three d i s t inc t   r eg ions :  (1) the  two-dimensional  region, 
(2) the  t ip-cone  region,  and (3) t he   i n t e rac t ion   r eg ion .   In   t he  two- 
dimensional  region,  the  f low i s  independent  of  the  spanwise  coordinate. The 
f low  f ie ld  is exac t ly   t he  same as tha t   genera ted  by a two-dimensional wing 



with  the same a i r f o i l   s e c t i o n  as the  rec'tangular  wing. The ti$-cone  region 
contains a three-dimensional  flow, a small por t ion   o f  which has   conical  symme- 
t ry .   In   the   in te rac t ion   reg ion   the   f low is  fully  three-dimensional.   There- 
fore ,  a theory   tha t   p red ic t s   the   shock  wave generated  by a rec tangular  wing 
includes  e lements   of   the   theories   of   conical   f lows,  two- and  three-dimensional 
f lows,   and  the  t ransi t ion  f lows  that   separate   these  regions.  I t  will be shown 
t h a t   t h e  new theory,   cal led  the  uniform  theory,  more cor rec t ly   descr ibes   the  
flow i n  each  of  these  regions.  

The flow  geometry  and  the  uniform  theory are reviewed  br ief ly   in   the 
fol lowing  sect ions.  The theory i s  developed  for a p a r a b o l i c   a r c   a i r f o i l   s e c -  
t ion ,   bu t   the   un i form  theory   can   be   appl ied   to  any wing with a biconvex 
a i r f o i l   s e c t i o n .  

LINEAR FLOW FIELD GEOMETRY 

Consider  the wing t o  be   f ixed   in  an  (x,y,z)  Cartesian  coordinate  system. 
The mean plane of t he  wing occupies   par t   of   the  x-y p lane   in   the   reg ion  
x > 0 ,  y > 0. A supersonic   s t ream  f lows  in   the  direct ion of increasing x a t  
Mach number M. Since  the  f low is  symmetric  with  respect t o   t h e   p l a n e  z = 0, 
only  the  region z > 0 w i l l  be  considered. 

The th i ckness   d i s t r ibu t ion  of the  wing is denoted by t ( x )  and is  given 
by the  foliowing  formula: 

t ( x )  = 0 a l l  y X G O  

t (x) = 2m(x - x2/2d) 0 < y < 2 

t ( x )  = 0 Y < O , Y > Z  

t ( x )  = 0 a l l  y x > 2d 

In  equation  (1) 2 represents  t h e  span  of  the  wing, 2d i s  its chord, and 
m i s  the   s lope   o f   t he   a i r fo i l   s ec t ion  a t  the  leading  edge.  Figure 1 is a 
plan view  of t he  wing. 

A fundamental  property of supersonic  flows is the  separat ion  of   the  f low 
f i e l d   i n t o   d i s t u r b e d  and  undisturbed  regions.   In  l inearized  theory,   the 
boundary  between  these two regions is a c h a r a c t e r i s t i c   s u r f a c e   ( i . e . ,   t h e  wave 
f ront ) .   For   the   rec tangular  wing, t he   l i nea r i zed  wave f ront   cons is t s   o f   the  
fol lowing  surface  in  z > 0. 

1. The p lanar   sur face  

where 
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2. A por t ion   o f   t he   t i p  cone at (0, 0 ,  0) 

3. A p o r t i o n   o f   t h e   t i p  cone a t  (0, 2, 0) 

If the  t ip   cones,   g iven by 2 and 3 above, are extended t o  y > 0, y < 2, 
t h ree   d i s t i nc t   d i s tu rbed   r eg ions  are defined.  These  regions are denoted  in  
f igu re  1 by the  numerals I ,  11, and 111. In  region I the  f low is  two- 
dimensional,  the same as f o r  a wing  of in f in i te   span .   In   reg ion  11, ins ide  
one or the   other   of   the   t ip   cones,   the   f low i s  dependent on only  one t i p  cone. 
Regions I and I1 a lone   r ep resen t   t he   f l ow  f i e ld   fo r  a semi- inf in i te  wing. 
Region I11 i s  the   in te rac t ion   reg ion .   In   th i s   reg ion   the   f low  f ie ld  i s  
influenced by both   t ip   cones .  Region I11 rep resen t s   t he   t yp ica l   f l ow  f i e ld  
pa t t e rn  a t  large  dis tances  from a f i n i t e  wing. 

The general  appearance  of  these  regions, a t  var ious  dis tances  from the  
wing, i s  a l s o  shown i n   f i g u r e  1. In  each  of  the  sketches  labeled  nearfield,  
midfield,  and f a r f i e l d ,   t h e  wave f r o n t  i s  shown as it  would appear when i n t e r -  
sec ted  by a plane at a constant  value  of x. In   the   near f ie ld   ske tch ,  which 
represents  a d is tance  downstream of one o r  two spans,   regions I ,  11, and I11 
are  about  the same s i z e .  In   the   midf ie ld ,  a t  a few spans  downstream, 
regions I and I1 are reduced a t  the  expense  of  region 111. Many spans down- 
s t ream,   the   charac te r i s t ic   fa r f ie ld   pa t te rn   emerges .  Region I becomes very 
small, region I1 becomes a crescent  shaped  area  with a th ickness   the   o rder  of 
the  span,  while  region I11 dominates  the  flow. 

DESCRIPTION OF THE UNIFORM THEORY 

The basis  of  the  uniform  theory i s  Whitham's hypothesis  (as  developed 
and app l i ed   i n  refs. 2 and 3 ) ,  which s t a t e s   t ha t   l i nea r   t heo ry   g ives  a cor rec t  
first approximation to   var ia t ions   o f   the   phys ica l   quant i t ies   a long   the   l in -  
ear ized   ( f ree-s t ream)   charac te r i s t ics ,   bu t   the   loca t ion   of   these   l inear ized  
c h a r a c t e r i s t i c s  i s  i n   e r r o r .   I n   o r d e r   t o   a p p l y  Whitham's hypo thes i s   t o   t he  
rectangular  wing, a be t te r   approximat ion   to   l inear ized   theory  must be  obtained 
than  the one afforded by the   equiva len t  body  method. Unfortunately, a b e t t e r  
approximation  cannot  be  expressed i n   t h e  form  of t he  Whitham F-function. Once 
t h i s  form of   so lu t ion  i s  abandoned,  Whitham's  simple  and  elegant r e s u l t s  can- 
not  be  duplicated.  But t he re  is no  reason why an  improved form of t h e   l i n e a r  
solution  could  not  be  used as t h e   b a s i s   o f  a cha rac t e r i s t i c   co r rec t ion ,  and 
t h i s   i n  fact i s  .the  crux  of  the  uniform  theory.  This  theory w i l l  be 
descr ibed   br ie f ly   in   the   fo l lowing   paragraphs .  

An expres s ion   fo r   t he   pe r tu rba t ion   ve loc i ty   po ten t i a l  due to   t he   p re sence  
of a non l i f t i ng   r ec t angu la r  wing i n  an otherwise  undisturbed stream of Mach 
number M is 
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In   t h i s   exp res s ion  m(l - xl /d)   represents   the   s t reamwise   s lope   d i s t r ibu t ion  
o f   t h e   p a r a b o l i c   a i r f o i l ,  V i s  the   f ree-s t ream  ve loc i ty ,  and A is  the  area 
in   t he   p l ane   o f   t he  wing  bounded  by the  Mach forecone from t h e   f i e l d   p o i n t  
(x ,y ,z) ,  and the  edges  of   the  wing. 

In   the  region z > 0, 0 < y < 2 a new set of  coordinates  based on the  
fami ly   o f   p lanar   charac te r i s t ics  will be  introduced.  Let 

Y = P1 

If the   loca t ion   of   the   po in t  P 1  i n   f i g u r e  2 i s  expressed  in  terms  of 
( E l ,  rl,  p l ) ,   t h e   p o t e n t i a l  can be  wri t ten as 

IT 

In   the   reg ion   near   the  wave f r o n t ,  t1 i s  always much smaller than rl (see 
f i g .  Z).. Since  only  the  region  near   the  f ront  i s  o f   i n t e r e s t ,   e q u a t i o n  (3) 
may be   s impl i f ied  by neglec t ing   the  f irst  term i n   t h e   e x p r e s s i o n   f o r  X I .  If 
t h i s   q u a d r a t i c   t e r m   i n  (E1 - xl )  i s  neg lec t ed ,   t he   r e su l t i ng   expres s ion   fo r  @ 
is  v a l i d   f o r  small values  of El/rl. The s impl i f i ed  form  of  equation (3) i s  

where A now rep resen t s   t he   a r ea   i n   t he   p l ane  of  t h e  wing  bounded  by 

and the  wing edges.  Note tha t   i n   t h i s   app rox ima t ion   t he   i n t e r sec t ion   o f   t he  
p lane   o f   the  wing  and t h e  Mach forecone i s  represented by  an approximating 
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f parabola   instead  of  a hyperbola. (The F-function  approach, by neglec t ing   the  
i quadra t ic  term B2(p, - y l )  2, would represent  this  approximation by a s t r a i g h t  

l ine   para l le l   to   the   l ead ing   edge . )   Equat ion  (4) represents   the  uniformly 
va l id   approximat ion   to   the   l inear   per turba t ion   po ten t ia l   in   the   reg ion  z > 0 ,  
o < y < z .  

Anothek set  of  coordinates is .chosen in   t he   r eg ion  z > 0, y < 0. (The 
region z > 0, y > 2 w i l l  not  be examined s ince  the  plane y = 2/2 
represents  a plane of symmetry.) 

x = C2 + Br2 

y = r 2  cos  p2 

z = r2 s in   p2  

If the  locat ion  of   the  point  P2  i n   f i g u r e  2 i s  expressed  in  terms of (e2, 
r2, p2) ,   t he   po ten t i a l   i n   t h i s   coo rd ina te   sys t em is  

Equation (5) can  be  approximated in   t he   r eg ion  where S2 / r2  i s  small i f  t h e  
term (5, - ~ 1 ) ~  i n  X2 is neglected.  T h i s  approximate  potentizl  i s  wr i t t en  

where A r ep resen t s   t he  area in   t he   p l ane   o f   t he  wing  bounded  by 

and the  wing edges. As mentioned  above, t h i s   app rox ima t ion   r e su l t s   i n  a 
parabol ic   forecone   in te rsec t ion .  (It does  not  give as crude  an a proximation 
as the   F- func t ion   in  which X2 is  l inea r i zed  by neglec t ing  B2yl 5 .) Equa- 
t i o n  ( 6 )  represents   the   un i formly   va l id   approximat ion   to   the   po ten t ia l   in   the  
region z > 0, y < 0. I t  can  be shown t h a t   t h i s  form  of 4 is  a uniformly 
va l id   asymptot ic   representa t ion   to  Q with  respect   to   the  parameter   p2 as 
W r 2  * 0. 
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The choice  of new coord ina tes   in   equa t ions  (4) and (63 is no t   a rb i t r a ry ,  
bu t  i s  c l o s e l y   r e l a t e d   t o   t h e   r a y s  and wave f r o n t s  of  geometrical   acoustics.  
In   th i s   contex t ,   the   x -ax is   p lays   the   ro le  of time and the  y-z   plane  repre-  
s en t s   t he   space ;  rl and r2 represent   dis tance  a long a p1  and p2 a re  
ray  labell ing  parameters;   and- El and 5, are “phase  variables.” Flow pas t  a 
rectangular  wing i s  analogous i n  many r e s p e c t s   t o   d i f f r a c t i o n   o f  a pulse  by a 
plane wall, and “shadow regions”  or   ”ref lected  regions” may be  def ined  in   the 
y-z  plane  (e.g. , reg2on I i s  a ref lected  zone,   region I1 is  a shadow region 
and t h e  shadow boundary i s  the  ray  p1 = 0 o r   p 2  = a/2). This analogy  has 
been  very  useful  in  determining  the  expressions (4) and ( 6 ) .  

The approximations (4) and (6) may b e   i n t e g r a t e d   d i r e c t l y ,   r e s u l t i n g   i n  
the  fol lowing  expressions  for   the axial  per turba t ion   ve loc i ty :  

1. In  the  region z > 0, 0 < y < 2: 

A Z  = Re 

2. In   the  region z > 0, y < 0: 

- 5, - 
cos2 9) 

” ( tan Bo - t a n  B z )  1 -1 
v ITf3 d 2d 

- 1  

1 / 2  

Bo = Re ( *“ e )  
~ r ,  cos2 

(252r2/8) - 2r2Z cos e - 
B Z  = Re 

(r2 cos 8 + 212 

where 9 = IT - p2. 
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Note tha t   equa t ions  (7) include a region where  both A. and AZ vanish. 
The pe r tu rba t ion   ve loc i ty   i n   t h i s   r eg ion  i s  the  same t h a t  would e x i s t   f o r  a 
two-dimensional  flow i n   t h e  x-z plane. .As  A, and AZ become real, t h e  
t i p  cones  modify t h i s  two-dimensional  region. A t  very  large  values   of  rl ,  if 

# 0, t he   so lu t ion   r educes   t o   t he  form t h a t  would be  obtained by equivalent  
body theory.  Likewise  the  form  given  by  equations ( 8 )  reduces to   t he   equ iva -  
l e n t  body so lu t ion  as r2 + QJ. (See the  appendix  for   the  equivalent  body 
corresponding t o   t h i s  wing.) 

Returning t o  Whitham’s hypothesis ,   the   l inear ized  solut ion  given  by 
equations (7) and (8) m u s t  be   corrected  to   account   for   cumulat ive  nonl inear  
effects. The correction  procedure is t o   r e d e f i n e   t h e   l i n e s  G1 = x - Brl and 

The s lope   o f   the   next   h igher -order   charac te r i s t ic   l ines   in   the   p lanes  
p i  = constant is 

C 2 = x -  Br2 t o  be  the  next  approximations t o   t h e   e x a c t   c h a r a c t e r i s t i c   l i n e s .  

+ terms of  order 

where i = 1 f o r  z > 0, 0 < y < Z and i = 2 f o r  z > 0, y < 0. In  equa- 
t i o n  (9) u r - /V   r ep resen t s   t he   ve loc i ty   i n   t he   d i r ec t ion  of  increas ing  ri 
and y = $ ‘ y v  is  t h e   r a t i o  of spec i f ic   hea ts .   S ince   on ly  a f i r s t - o r d e r  
cha rac t e r i s t i c   co r rec t ion  i s  requi red ,   on ly   the   l inear   t e rms   in   the   exac t  
expression  for   the  character is t ics   have  been  included  in   equat ion (9). In 
addi t ion ,   the  term B(u/V) + (uri/V) may be  neglected  because  the  curvature  of 
t h e   c h a r a c t e r i s t i c   l i n e  i s  very small. (For  planar families of cha rac t e r i s t i c s  
B(u/V) + (Uri/V) i s  iden t i ca l ly   ze ro . )  

Equation (9) may be  integrated,   and,   in   analogy  with  the  procedure 
developed by Whitham, the   co r rec t ed   Charac t e r i s t i c s  may be  expressed as 

The funct ion  G(Si , r i ,p i )  i s  g iven   exp l i c i t l y  as: 

1. In  the  region z > 0, 0 y < 2 

7 
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2 .  I n   t h e   r e g i o n  z > 0, y < 0 

r2 cos e + Z 
- r 2  tan-1  B Z  - BZ + 

252 ~ 

COS e B  COS^ e 

B cos   e ( r2  COS e + 2) r2 cos e + Z 
+tan-  2c2 - B Z  COS e d BZ 

Br22 cos2 e Br22 cos2 e 6r22  cos2 e 
+ 

4d Bo + 4d Bo3 - 4d ~ , 4  t an-1  B;,’ 

Br22 cos2 e f i2Z2 cos e ( r 2  COS e + I )  
+ 4d t an -1  B Z  + 8d(c2 - B Z  cos 0) BZ 

- 52(252 - B Z  cos e) ( r 2  COS e + 2) 
4d COS e (c2 - BZ COS e) BZ 

B~ cos   e ( r2  cos e + Z) 3 

8d(5 - B Z  cos 0) BZ 

Br22 cos2 e cos e ( r2   cos  e + 2) 
+ 

4d Bo4 t a n  2c2 - B Z  COS e 



The so lu t ions   represented  
and (€0, i = 2 )  are multivalued, 

by equations (7) and (10, i=1) or   equa t ions  ( 8 )  
and  thus do not   represent  a phys ica l ly   p laus i -  

b l e   s i t ua t ion .   In   o rde r   t o   e l imina te   t he   mu l t iva lues ,  a shock wave m u s t  be 
in t roduced   in to   the   f low  f ie ld .  The shock wave separates   the  regions  of   dis-  
turbed and undisturbed flow,  and i s  located by t h e   r u l e   t h a t   t h e   d i r e c t i o n   o f  
the  shock wave b i sec t s   t he   ang le  between t h e   c h a r a c t e r i s t i c s  which meet a t  a 
poin t .  

In   the   undis turbed   f low,   the   s lope   o f   the   charac te r i s t ic  is t h e  
free-stream wave s lope  B .  In   the   d i s turbed   f low,   the   charac te r i s t ic   d i rec-  
t i on   t o   be   u sed  is  assoc ia ted   wi th   the   fami ly   tha t   car r ies   loca l   d i scont inu-  
i t i e s   i n   t h e   p e r t u r b a t i o n   q u a n t i t i e s .   I n   t h e  case of  the  shock  produced  by a 
rectangular  wing, more than  one  such  family  exists.   For  example,   f igure 3 
shows t h e   d i s t o r t e d   c h a r a c t e r i s t i c s   i n   t h e   p l a n e   o f  symmetry o f   t he  wing. ( In  
the  plane  of  symmetry (p, = 2/2) both  t ip   cones  have  the same t r ace . )   In   t he  
region  ahead  of  the trace o f   t h e   d i s t o r t e d   t i p  cone cha rac t e r i s t i c ,   t he   f ami ly  
of d i s to r t ed   p l ana r   cha rac t e r i s t i c s  is used to   ca l cu la t e   t he   shock   d i r ec t ion .  
But wi th in   the   in f luence  domain of   the  t ip   cone,   the   family  associated  with 
t h e   t i p  cone t r a c e  i s  used t o  determine  the shock-wave s lope.  

Each fami ly   o f   charac te r i s t ics  may be  expressed as 

where 5, ident i f ies   the   fami ly   to   be   used   in   the   b i sec t ion   ru le ,  and f ( r i )  
is a funct ion  appropriate   to   each  family.   In   f igure 3, where i = 1, the  two 
famil ies   used  are  (1) Eo = E , ,  f ( r 1 )  = 0 and  (2) Eo = - B(2/2)2/2r,, 
f ( r1 )  = B (2 /2 )  2 /2r1 .  

In  terms  of  the  parameter E o ,  t he   co r rec t ed   cha rac t e r i s t i c s  can  be 
expressed as 

The b i sec t ion   ru l e ,  when appl ied 

Slope  of  shock 

t o  (11) , becomes 

Slope  of  shock 

If the   pos i t ion   o f   the   shock  wave is given by 

Xsh = Bri - H(r i )  



then  the  slope  of  the  shock  dxsh/dri  i s  

o r  

Note t h a t  a l l  p a r t i a l   d e r i v a t i v e s   i n   e q u a t i o n  (15) are to   be   t aken   wi th  5, 
held  constant .  

From equations (11)  and  (13), H may be  expressed as 

Equations  (15)  and (16) represent  a f i r s t -o rde r ,   non l inea r ,   o rd ina ry   d i f f e r -  
e n t i a l   e q u a t i o n   f o r  as a funct ion  of  ri. The func t iona l  form of  G.  i s  
s o  complicated  that  a approach must be  used t o   s o l v e   t h i s   e q u a t i o n .  

In   o rde r   t o   so lve   equa t ions  (15)  and  (16) a modif icat ion  of   the familiar 
Euler-Cauchy  forward integrat ion  procedure was used.  In terms of  small, 
f ini te   increments   the  different ia l   system  can  be  wri t ten as: 

If s t a r t i n g   v a l u e s  coo and rio are  chosen, and  an increment Ari is given, 
equation  (17a) shows t h a t  H changes  by an amount 

When ri = rio + Ari.50 must  change 
these  increments as a change i n  AH 

t o  coo + A t o .  Equation (17b) r e f l e c t s  
by  an amount 
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Since H i s  t h e  same in  both  equations  (18a) and (18b), 

Equation  (19) is a nonlinear  algebraic  equation  for  determining  the unknown 
increment AEo. Once AC0 i s  found, a new s t a r t i n g   p o i n t  

Eo = E o ,  + Aco,ri = rio + Ari 

is found. The procedure is c o n t i n u e d   i n   t h i s  manner u n t i l   t h e  shock wave 
i n t e r s e c t s  a new fami ly   o f   charac te r i s t ics .  A t  t h i s   p o i n t  to is redefined,  
t h e   s t a r t i n g   v a l u e  of ro i s  obtained from the  preceding  shock wave calcula-  
t i o n ,  and the  numerical   in tegrat ion  can  be  res tar ted.  

A s l i gh t   d i f f i cu l ty   i n   t he   p rocedure   appea r s   i n   t he   r eg ion  z > 0, y < 0. 
For   the  s tar t ing  values ,  Eo = 0,  r2 = 0 when subs t i tu ted   in to   the   govern ing  
formulas,  gives a r e s u l t  which i s  the  indeterminate  from O/O. This  problem 
is easily  surmounted by matching t o  a conical   f low  solut ion  near  r2 = 0. 

Once the  uniformly  val id   veloci ty   f ie ld   (with  shock waves) has  been 
obta ined ,   the   p ressure   r i se  at any p o i n t   i n   t h e  flow i s  calculated  f rom  the 
expression 

TEST PROCEDURES AND RESULTS 

The general  arrangement of t h e  wing  model i s  shown i n   f i g u r e  4. The 
symmetric a i r f o i l   s e c t i o n  i s  a por t ion   o f  a parabol ic   a rc   wi th  a thickness  
dis t r ibut ion  given  by t = 0.250  (x - 0.197  x2) cm where t i s  t h e   t o t a l  
thickness   of   the  wing  and x i s  a streamwise  variable. Wings were fabr ica ted  
with  spans  of  2.54 cm (Z/d=  1),   10.16 cm (Z/d = 4) and 15.24 cm (Z/d = 6) .  

The,,experiments  were  conducted i n   t h e  Ames 2- by 2-Foot  Transonic Wind 
Tunnel a t - a  Mach number of  1.40, a to ta l   p ressure   o f   67 .5  kN/m2 and a t o t a l  
temperature 296O K. The arrangement  of  the model i n   t h e  wind tunnel i s  shown 
i n   f i g u r e  5. The wing i s  suppor t ed   i n   t he   t e s t   s ec t ion  by a tapered,   conical  
s t i n g   f a i r e d   i n t o   t h e   w i n g ' s  axis of symmetry. I n   o r d e r   t o  minimize i t s  
effect on the  ' f ront   shock wave, t h e   s t i n g  w a s  f a s t e n e d   t o   t h e  a f t  por t ion   o f  
t he  wing only. The 58.5 cm long  sting  assembly was s e c u r e d   t o  a l i n e a r  
actuator .  The actuator   had a continuously  variable  15.24 cm streamwise motion, 
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and could   be   p rese t   to  any streamwise s t a t i o n   p r i o r   t o  a test  run.  During a 
run,   the  x (streamwise)  posit ion  of  the wing w a s  monitored  by a c a l i b r a t e d  
poten t iometer   tha t  w a s  coupled to   t he   15 .24  cm motion. 

The shock-wave s igna ture  w a s  measured  with a s l ende r  1' semiangle  probe. 
The probe was o f f s e t  10.2 cm from t h e  test  s e c t i o n  wall in   o rde r   t o   exc lude  
the  effect of   the wall's boundary l aye r  from t h e  measurements. On a plane 
inc l ined  a t  45' t o   t h e   f l o w   d i r e c t i o n ,   f o u r   h o l e s   o f  0.1024 cm diameter were 
d r i l l e d  7.62 cm from the   p robe   t ip .  The pressures  from th is   p robe  were 
measured r e l a t i v e   t o   t h e  free-stream s t a t i c  pressure  by means o f  a ca l ib ra t ed  
pressure  t ransducer .  

Before  each  run,  the wing w a s  set i n   t h e  test  sec t ion  s o  t h a t   t h e  shock 
wave would be  s l ight ly   behind  the  probe  or i f ice .   During  the  run  the model was 
moved upstream i n   d i s c r e t e   s t e p s  by using  the  15.24 cm motion  of  the  actuator.  
A t  each  s tep,   the   overpressure and d is tance  moved was recorded.   In   this  
manner t h e   e n t i r e  shock-wave s igna ture  w a s  obtained. 

The r e s u l t s   o f   t h e  test  program a r e  summarized i n   f i g u r e s  6 through 8. 
In   each  case  the  s ignatures  are shown as normalized  overpressures as a func- 
t i o n   o f  a horizontal   s .cale  measured  from the   pos i t ion   o f   the   l inear ized   lead-  
ing  Mach l i n e .   I n  a l l  the  figures,  linear  dimensions  have  been  scaled  with 
r e spec t   t o   t he   d i s t ance  from the  leading  edge  to   the  point   of  maximum 
th i ckness   ( i . e . ,   w i th   r e spec t   t o  2.54 cm). 

Figure 6 shows t h e  shock-wave s igna tures   for   each   of   the   th ree  wings 
t e s t e d  a t  varying  dis tances  below the  wing (z d i r e c t i o n ) .  The wings  having 
values   of  Z/d of  4 and 6 show strong  two-dimensional  shock waves i n   t h e   n e a r  
f i e ld ,   wh i l e   t he  Z/d = 1 wing shows a r e l a t i v e l y  weaker  three-dimensional 
type of shock wave s igna ture  a t  a l l  d i s tances .  The r e l a t i v e  change i n  peak 
shock  overpressure  with  distance i s  g r e a t e s t   f o r   t h e  wings  with Z/d of  4 and 
6.   This   effect  i s  a t t r i bu ted   t o   t he   sha rp   p re s su re  relief assoc ia ted   wi th   the  
wing t i p  cones.  This  behavior i s  ind ica t ed   i n   f i gu re   7 (a )  which shows the  
shock s igna tu re   fo r   t he  wing Z/d = 4 and  z/d = 2 . 2 ,  bu t  a t  d i f fe ren t   span-  
wise s t a t i o n s .  The shock s t r eng th  below t h e  wing t i p  ( span   s ta t ion   y /d=0.0)  
i s  about   half   the   value a t  the   cen ter l ine   ( span   s ta t ion   y /d  = 2.0)  because 
t h e   c e n t e r l i n e   s t a t i o n  i s  i n  a two-dimensional  flow f i e l d   ( a s  far  as the  shock 
s t r eng th  is conce rned) ,   wh i l e   t he   t i p   s t a t ion  i s  loca ted   wi th in   the  dependence 
domain o f   t h e   t i p  cone a t  y/d = 0.0. Th i s   r a t io   o f  2 : l  i n  peak  overpressure 
is a l so   p red ic t ed  by the  linearized  theory,  but  (of  course)  the  magnitudes 
obtained from l inea r   t heo ry  are inco r rec t .  A t  l a rge r   d i s t ances ,   t he   e f f ec t   o f  
spanwise  variation i s  reduced.   This   la teral   smoothing  of   the  pressure  f ie ld  
i s  due t o   t h e   n e t   c a n c e l l i n g   e f f e c t   o f   b o t h  wing t i p  cones on the  two- 
dimensional  f ield.  This e f f e c t  i s  shown i n   f i g u r e  7 @ ) .  

The i n f l u e n c e   o f   r o l l   a n g l e  on the  measured pressure   s igna tures  i s  shown 
i n   f i g u r e  8 f o r  each  of  the  three  wings.  In  each case, t h e   r o l l   a n g l e  is 
defined by a ro ta t ion   o f   the   p lane   o f   the  wing r e l a t i v e   t o   t h e   o r i g i n a l  
horizontal   p lane  about   the  axis   of  symmetry o f   t h e  wing.  (This axis is a l s o  
the   ax is   o f   the   s t ing . )   Dis tance  from the  axis  of  symmetry is denoted  by R/d, 
where 
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For  the Z/d = 1 wing, t h e   s i g n a t u r e  i s  almost  axisymmetric a t  R/d = 16.0 
because a t  t h i s   d i s t a n c e   t h e  dominant e f f e c t  on the   sonic  boom f o r   t h i s  low 
a s p e c t   r a t i o  wing i s  an ax ia l   sou rce   d i s t r ibu t ion .   Fo r   t he   o the r  wings l a rge  
d i f fe rences  in  meridional  shock  strengths and loca t ions  are apparent.  

COhPARISON OF MEASUREMENTS AND THEORY 

Predicted  s ignatures   of   the   uniform  theory and equivalent  body o f  
revolution  theory are compared with  experimental   s ignatures   in   f igures  9 t o  11. 
Detai ls   of   the   equivalent  body theory '   fo r   th i s   conf igura t ion  are desc r ibed   i n  
the  appendix. The s igna tu res   i n   t he   p l ane   o f  symmetry below t h e  wing f o r  
var ious   l ength   ra t ios ,  Z/d, are compared i n   f i g u r e   9 .  These s igna tu res   i nd i -  
c a t e   t h a t   f o r   s h o r t  wings ( i .  e . ,  Z/d = 1, f i g .  9 (a))   both  the  uniform  theory 
and the  equivalent  body theory  predict   the   experimental   resul ts   qui te   wel l  at 
a l l   t h e   d i s t a n c e   r a t i o s  shown. However, the  s ignatures   corresponding  to  
longer  wings ( i . e . ,   f i g s .  I 9  (b)  and 9 (c ) )   i nd ica t e   t ha t   wh i l e   t he   equ iva len t  
body theory  gives   reasonable   values   for   the peak overpressure,  it substan- 
t i a l ly   overes t imates   the   s igna ture   l ength .  On the   o the r  hand,  with  one  excep- 
t ion,   the   uniform  theory  gives  a be t t e r   p red ic t ion   fo r   bo th   t he  peak pressure  
and s igna tu re   l eng th   fo r  a l l  values of Z/d. The case  z/d = 4 i n   f i g -  
ure  9(b) i s  an exception  because  the  t ip-cone  interaction  has  not  been  pre- 
d i c t ed   exac t ly .   Th i s   l oca l   de fec t   has   l i t t l e   e f f ec t  on the   overpressure  a t  
g rea t e r   d i s t ances .  The experimental   signatures  for  z/d = 8.0 and  16.0 
(f ig .   9(c))   are   probably  less   accurate   than  the  others   because  the  larger  wing 
v i b r a t e d   q u i t e   v i s i b l y   d u r i n g   t h e   t e s t .  These v ib ra t ions  would t e n d   t o   d i s -  
t o r t   t h e   s i g n a t u r e s   a t   t h e   l a r g e r   d i s t a n c e   r a t i o s .  An i n d i c a t i o n   o f   t h i s  
d i s t o r t i o n  is  the  rapid  expansion  behind  the  shock wave f o r   t h e   c a s e  
z/d = 16.0 as compared t o  tha t   fo r   z /d  = 8.0. A l l  previous  experimental and 
t h e o r e t i c a l   r e s u l t s   i n d i c a t e   t h a t   t h e   s l o p e   o f   t h e   c u r v e  i n  the  expansion 
r eg ion   dec reases ,   r a the r   t han   i nc reases ,   i n  a regularly  decaying  shock wave 
s igna ture .  

In   the   midf ie ld  and fa r f ie ld   reg ions   no   exper imenta l   resu l t s   a re  
ava i lab le ,   bu t  a comparison  of  the two t h e o r i e s   i n   t h e i r   p r e d i c t i o n   o f   t h e  
peak overpressures i s  shown i n   f i g u r e  10.  For Z/d = 1, t h e  agreement i s  
good a t  a l l  distances.   For Z/d = 4 and Z/d = 6,   the two theo r i e s   l o se  mutual 
agreement a t  sho r t   d i s t ances .  The nearf ie ld   experimental  peak overpressures 
are a l s o  shown i n  f igure  10,  and these  show tha t   excep t   fo r   t he  one  point 
corresponding t o   t h e  Z/d = 6 wing, good agreement  between the  uniform  theory 
and  experiment is achieved. 

An important  property  of  the  decay  curves shown i n  f i g u r e  10 is  t h e  
behavior  of  the  uniform  theory  curve for the  higher  span  wings.  These  curves 
approach the   equiva len t  body theory from  below  and show t h a t  some b e n e f i t  may 
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be  obtained by u s i n g   t h i s  %on F-funct ion”   behavior   in   the   midf ie ld   reg ion .  
Further  work  on t h i s   p o i n t  i s  necessary  before any conclusions  concerning  the 
bene f i t s  o f  an  unswept  wing may be  reached. 

So far only   the   sonic  boom overpressures  under  the wing  have  been 
compared. Figure 11 shows how the  overpressures  compare i n   t h e   r e g i o n   t o   t h e  
s ide   o f  t h e  wing a t  z/d = 16.0. A t  t h i s   ang le  and  distance,   the  uniform 
theory and the   equiva len t  body theory   p red ic t  similar signature  shapes  with 
reasonable  agreement  between  theory and experiment. 

CONCLUSIONS 

A new theo ry   fo r   p red ic t ing   son ic  boom pressure  signatures  produced by 
non l i f t i ng   r ec t angu la r  wings  has  been  described  and compared with  the  equiva- 
l e n t  body of   revolut ion  theory and  with a series of experimentally  determined 
near f ie ld   s igna tures .   For  low a s p e c t   r a t i o  wings ( i . e . ,  less than  one-half) ,  
bo th   t heo r i e s   a r e   i n   exce l l en t  agreement  with  experiment.  For  higher  aspect 
r a t i o  wings ,   wi th   s igna tures   t aken   in   the   ver t ica l   p lane   o f  symmetry, t he  
equivalent  body theory   se r ious ly   overpredic t s   s igna ture   l engths .  However, it 
does  predict  peak  overpressure w i t h  accuracy  comparable t o   t h e  new theory.  
With s ignatures   taken  in   the  horizontal   p lane  of   the  wing,   the  two theor ies  
are  in  excellent  mutual  agreement,  and c o l l e c t i v e l y  are in  reasonable  agree- 
ment with  experiment.  Although  no  experiments  were  conducted i n   t h e   f a r f i e l d ,  
t h e  two theo r i e s   g ive   e s sen t i a l ly   i den t i ca l   p red ic t ions  i n  t h i s  region. 

Ames Research  Center 
National  Aeronautics  and  Space  Administration 

Moffett   Field,  Calif . ,  94035, Sept.  2 ,  1971 
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APPENDIX 

EQUIVALENT BODY METHOD 

The equivalent body f o r  a rec tangular  wing is  d i f f e ren t   fo r   each  
meridional  angle e. The proper  form of   the  equivalent  body  can  be  obtained 
from  equation ( 6 )  fo r   t he   pe r tu rba t ion   ve loc i ty   po ten t i a l .  If t h e   r a d i c a l   i n  
equation (6) i s  l i n e a r i z e d ,   t h e   p o t e n t i a l  may be  expressed as 

where A represents   the  area i n   t h e   p l a n e   o f   t h e  wing  bounded  by 
C2 - x1 - By, cos 8 = 0 and t h e  wing  boundary. An oblique  coordinate  system 

s ,  = Y, 

t l  = X, + BY, COS e I 
i s  introduced  into  equation  (Al).  In  terms  of (s1  , t l )  as var iables   of  
i n t eg ra t ion ,   t he   po ten t i a l  becomes 

where the   i n t eg ra l   i n   t he   squa re   b racke t  is taken  over a l l  values  of s1 on 
the wing. 

From reference 2 ,  the   approximate   per turba t ion   ve loc i ty   po ten t ia l   for  a 
s lender  body of   revolut ion may be  expressed as 

where S ( t l )  i s  the   c ross -sec t iona l  area of   the body a t  s t a t i o n  t l  , and 
pr imes   ind ica te   d i f fe ren t ia t ion   wi th   respec t  to t l .  A comparison of equa- 
t i o n s  (A3) and (A4) shows tha t   the   d i s turbance   f ie ld   p roduced  by the   rec tan-  
gu la r  wing is t h e  same as would e x i s t   f o r  a s lender  body of  revolution  with a 
c ross -sec t iona l  area d i s t r i b u t i o n   o f  
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Equation (AS) is  v a l i d   f o r  a l l  values  of t l  less than 2d ( i .   e .  , excluding 
the   in f luence  domain of t h e   t r a i l i n g  edge)  and S' ( t l )   has   t he   fo l lowing  
representa t ions  i n  0 < t l  .c 2d. 

Equation (A6) can   be   in tegra ted   to   g ive  an exp l i c i t   f o rmula   fo r   t he  
c ross -sec t iona l  area d is t r ibu t ion   of   the   equiva len t   s lender  body of   revolu t ion .  

The r ad ius   d i s t r ibu t ion  is  given by R(t1) = (l,/m)-. 
- 

Figure 1 2  shows a sampling  of  typical  equivalent  bodies  of  revolution 
f o r   t h e  wing Z/d = 4 .  A t  8 = Oo and 0 = 45' the   equivalent   bodies  are 
s lender ,   bu t  a t  0 = 90' the   equivalent  body degenera tes   to  a blunt  forebody. 
Once these  equivalent  bodies  have  been  found,  the  sonic boom corresponding  to 
each of them may be  found i n  a s t ra ightforward manner  by fol lowing  the 
procedures   given  in   reference 2. 
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Figure 1 .- Coordinate system and wave geometry for  the rectangular  wing. 
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Figure 2.- Wave front  pattern  and  transformed  coordinates  in  a plane x = constant. 
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Figure 3.- Shock wave and  distorted  characteristics in the  plane p1 = ( 1  /2) 2 .  
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